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Abstract

I compute the two-loop e�ective potential in the Landau gauge for a general renormal-

izable �eld theory in four dimensions. Results are presented for the MS renormalization

scheme based on dimensional regularization, and for the DR and DR
0
schemes based

on regularization by dimensional reduction. The last of these is appropriate for mod-

els with softly broken supersymmetry, such as the Minimal Supersymmetric Standard

Model. I �nd the parameter rede�nition which relates the DR and DR
0
schemes at

two-loop order. I also discuss the renormalization group invariance of the two-loop

e�ective potential, and compute the anomalous dimensions for scalars and the beta

function for the vacuum energy at two-loop order in softly broken supersymmetry.

Several illustrative examples and consistency checks are included.
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1 Introduction

The Fermilab Tevatron collider and the CERN LHC collider hold the promise of exposing

the nature of spontaneous electroweak symmetry breaking. In the Standard Model, this

mechanism relies on a non-zero vacuum expectation value (VEV) for a fundamental Higgs
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scalar �eld. There are good theoretical and experimental reasons to suspect that this picture

is correct, but incomplete, and must be embedded in a larger theory such as supersymmetry

[1, 2]. When new experimental discoveries are made, the tasks of telling the di�erence

between di�erent candidate models of electroweak symmetry breaking and constraining the

underlying parameters of the successful theory will require high-precision calculational tools

at the two-loop level or better.

The e�ective potential [3]-[5] allows the calculation of the VEVs in the true vacuum state

of a theory with spontaneous symmetry breaking. In this formalism, the scalar �elds of the

theory are each separated into a constant classical background � plus quantum uctuations.

The e�ective potential V (�) is equal to the tree-level potential in the classical background,

plus the sum of one-particle-irreducible connected vacuum graphs. These are calculated

using the Feynman rules with �-dependent masses and couplings. Thus one may write

V = V (0) +
1

16�2
V (1) +

1

(16�2)2
V (2) + : : : ; (1.1)

where V (n) represents the n-loop correction.y In this paper, I will be concerned with the ef-

fective potential in Landau gauge. Although the e�ective potential itself is gauge-dependent,

physical properties following from it, such as its value at stationary points, and the ques-

tion of whether or not spontaneous symmetry breaking occurs, are gauge invariant [6]. The

one-loop contribution V (1) is well-known for a general �eld theory, and is reviewed in section

3. In ref. [7], Ford, Jack and Jones have calculated V (2) in the special case of the Standard

Model using dimensional regularization (DREG) with minimal subtraction or modi�ed min-

imal subtraction (MS). Their calculations can be generalized to obtain the corresponding

result for any renormalizable �eld theory, as I will do explicitly in section 4.

However, it is well-known that the DREG regularization method is not convenient for

theories based on supersymmetry. This is because in DREG, the vector �eld only has

4 � 2� components, introducing a spurious non-supersymmetric mismatch with the number

of degrees of freedom of the gaugino. Therefore, in DREG the relationships between couplings

which should hold in a softly broken supersymmetric theory are violated even at one-loop

order. Instead, one can use the dimensional reduction (DRED) method [8], in which loop

integrals are still regularized by taking momenta in 4� 2� dimensions, but all 4 components

of each vector �eld are kept. The extra 2� components of the gauge �eld in DRED transform

like scalars in the adjoint representation of the gauge group, and are known as epsilon

yTo save ink, a factor of 1=(16�2)n is always factored out of the n-loop contribution to the loop expansion
of the e�ective potential, �-functions, and anomalous dimensions in this paper.
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scalars. The renormalization scheme based on DRED with modi�ed minimal subtraction is

known as DR. It has the virtue of maintaining manifest supersymmetry in theories where

supersymmetry is not explicitly broken.

Realistic models of the physics at the TeV scale do involve explicit soft violations of

supersymmetry, however. In such models, the DR renormalized dimensionless couplings of

the theory obey the relations prescribed by unbroken supersymmetry. However, the epsilon

scalars in general do not have the same masses or dimensionful couplings as do the ordinary

4� 2� vector �eld. In fact, computation of the renormalization group (RG) equations shows

that the running squared masses of the epsilon scalars cannot be consistently set equal

to those of the corresponding vector gauge bosons [9]. This makes the DR scheme also

inconvenient, since the epsilon-scalar masses are unphysical. A better scheme is the DR
0

scheme [10], which di�ers from DR by a parameter rede�nition. The DR
0
scheme o�ers the

advantages that the epsilon-scalar masses completely decouple from all RG equations, and

also from the equations that relate running renormalized parameters to pole masses and

other physical observables.

In this paper, I will present results for the two-loop e�ective potential in the Landau

gauge and in each of the MS, DR, and DR
0
renormalization schemes. For models with exact

supersymmetry, the last two schemes are the same, while for models with softly broken

supersymmetry the DR
0
scheme is by far the most convenient.

The topologies of the one-particle-irreducible connected vacuum graphs at one- and two-

loop orders are shown in Figure 1. Because the one-loop graph topology does not involve

interaction vertices, V (1) clearly depends only on the �eld-dependent squared masses m2
n,

where the index n runs over all of the real scalars, two-component fermions, and vector

degrees of freedom in the theory. Note that any complex scalar can be written in terms of

two real scalars, while four-component Dirac and Majorana fermions can always be written

in terms of two-component left-handed Weyl fermions, in a way throughly familiar to dis-

ciples of supersymmetry (see refs. [1, 2] for a discussion). In any dimensional-continuation

regularization scheme, quadratic divergences are automatically discarded, and one �nds for

the renormalized e�ective potential at one-loop order:

V (1) =
1

4

X
n

(�1)2sn(2sn + 1)(m2
n)

2(lnm2
n � kn): (1.2)

Here I have adopted the notation

ln(x) = ln(x=Q2); (1.3)
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Figure 1: Topologies of one-particle-irreducible connected vacuum Feynman diagrams for
the one-loop and two-loop contributions to the e�ective potential.

where Q is the renormalization scale, and sn = 0; 1=2; 1 for real scalars, two-component

fermion, and vector degrees of freedom respectively,z and kn are constants depending on the

details of the renormalization scheme.

From �gure 1, it is clear that at two-loop order the result must be of the form

V (2) =
X
n;p

gnnppfnp(m
2
n;m

2
p) +

X
n;p;q

jgnpqj2fnpq(m2
n;m

2
p;m

2
q); (1.4)

where gnpqr and gnpq are �eld-dependent four- and three-particle couplings, and fnp(x; y)

and fnpq(x; y; z) are Q-dependent functions obtained by performing the appropriate two-

loop integrations. So the task is to identify these objects for each combination of particle

types that can contribute.

The rest of this paper is organized as follows. Section 2 describes the �eld-dependent

masses and couplings, lists the relevant Feynman diagrams, and presents necessary conven-

tions. Section 3 reviews the one-loop e�ective potential, distinguishing between the MS,

DR, and DR
0
schemes. Sections 4-6 present the results for the two-loop e�ective potential

contribution in each of those schemes. Section 6 also explicitly gives the rede�nitions neces-

sary to go from DR to DR
0
. Section 7 discusses the RG invariance of the e�ective potential

in the DR
0
scheme, and derives some necessary results for the scalar anomalous dimension

and vacuum energy beta function in softly broken supersymmetry. Section 8 contains some

illustrative examples and consistency checks.

2 Conventions and setup

zThe contribution of epsilon scalars is discussed in section 3.
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2.1 Field-dependent masses and couplings

Let us write the quantum �elds of a general renormalizable �eld theory as a set of real

scalars R0
i, two-component Weyl fermions  0

I , and vector �elds A0�
a . Scalar avor indices are

i; j; k; : : :; fermion avor indices are I; J;K; : : :; and a; b; c; : : : run over the adjoint represen-

tation of the gauge group. Space-time vector indices are written as Greek letters �; �; �; : : :.

I use a metric with signature (�+++), and the notations for fermions follow [1, 2]. The

primes are used to indicate that these �elds are not squared-mass eigenstates. The kinetic

part of the lagrangian includes

� L =
1

2
m2
ijR

0
iR

0
j +

1

2
(mIJ 0

I 
0
J + c:c:) +

1

2
m2
abA

0�
a A

0
�b: (2.1)

The symmetric fermion mass matrix mIJ yields a fermion squared-mass matrix

m2
IJ = m�

IKm
KJ : (2.2)

Then m2
ij and m2

ab are real symmetric matrices, and m2
IJ is a Hermitian matrix, and in

general they all depend on the classical background scalar �elds. In order to calculate the

e�ective potential, the �rst step is to rotate to squared-mass eigenstate bases Ri,  I, A�
a.

This can be done by using orthogonal matrices N (S), N (V ) for the scalar and vector degrees

of freedom, and a unitary matrix N (F ) for the fermion degrees of freedom. So, the rotations

R0
i = N

(S)
ji Rj; (2.3)

 0
I = N

(F )�
JI  J ; (2.4)

A�0
a = N

(V )
ba A�

b ; (2.5)

are chosen such that:

N
(S)
ik m2

klN
(S)
jl = Æijm

2
i ; (2.6)

N
(F )
IK m

2
KLN

(F )�
JL = ÆIJm

2
I ; (2.7)

N (V )
ac m

2
cdN

(V )
bd = Æabm

2
a: (2.8)

Here m2
i , m

2
I , and m

2
a are respectively the scalar, fermion, and vector squared-mass eigen-

values which will appear in the e�ective potential. It should be noted that in general N (F )

diagonalizes the fermion squared-mass matrix m2
IJ , but need not diagonalize the fermion

mass matrix mIJ . All that is required is that

M IJ = N
(F )�
IK mKLN

(F )�
JL (2.9)
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has a block diagonal form, with non-zero entries only between states with the same squared-

mass eigenvalue. Indeed, it is quite often not particularly desirable for N (F ) to diagonalize

the fermion mass matrix, for example in the case of charged Dirac fermions, with doubly-

degenerate eigenvalues for m2
I , whereM

IJ is best left o�-diagonal in 2�2 blocks. The matrix

M IJ and its complex conjugateM�
IJ will appear as mass insertions. In practical applications,

the diagonalizations just described are easily performed numerically using a computer, and

under favorable circumstances (such as those studied in section 8) they can be done analyt-

ically. In either case, the problem amounts to �nding the orthonormal eigenvectors of m2
ij,

m2
IJ , and m

2
ab.

Now the interaction terms in a general renormalizable theory can be written in terms of

the squared-mass eigenstate �elds as

LS = �1

6
�ijkRiRjRk � 1

24
�ijklRiRjRkRl; (2.10)

LSF = �1

2
yIJk I JRk + c:c:; (2.11)

LSV = �1

2
gabiAa

�A
�bRi � 1

4
gabijAa

�A
�bRiRj � gaijAa

�Ri@
�Rj; (2.12)

LFV = gaJI A
a
� 

yI�� J ; (2.13)

Lgauge = gabcAa
�A

b
�@

�A�c � 1

4
gabegcdeA�aA�bAc

�A
d
� + gabcAa

�!
b@�!c; (2.14)

where !a and !a are massless (in Landau gauge) ghost �elds. This de�nes the �eld-dependent

couplings to be used in the two-loop e�ective potential calculation. The scalar interaction

couplings �ijk and �ijkl are each completely symmetric under interchange of indices, and real.

The Yukawa couplings yIJk are symmetric under interchange of the fermion avor indices

I; J . The remaining couplings all have their origins in gauge interactions. The vector-scalar-

scalar coupling gaij is antisymmetric under interchange of i; j. The pure gauge interaction

gabc is completely antisymmetric; it is determined by the original gauge coupling g, the

antisymmetric structure constants fabc of the gauge group, and N (V ), according to

gabc = gf efgN (V )
ae N

(V )
bf N (V )

cg : (2.15)

Similarly, if the fermions  0
I transform under the gauge group with representation matrices

(T a)JI , then the vector-fermion-fermion couplings are

gaJI = g(T b)KLN
(F )�
JK N

(F )
IL N

(V )
ab : (2.16)

Note that even the dimensionless couplings generically depend on the classical scalar back-

ground �elds �, through their dependence on the rotation matrices N (S), N (F ), and N (V ).
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2.2 The Feynman diagrams

The two-loop e�ective potential is to be evaluated by computing the one-particle-irreducible

connected vacuum Feynman diagrams appearing in �gure 2. The masses and couplings of

�elds appearing in these diagrams are as indicated on the right sides of eqs. (2.6)-(2.14).

Dashed lines denote scalar propagators. Solid lines denote fermion propagators with helicity

along the direction of the arrow, and large dots between opposing arrows denote insertions

of the fermion mass matrix M IJ or its complex conjugate M�
IJ , depending on whether the

arrows are incoming or outgoing. Vector propagators are indicated by wavy lines, and ghost

propagators by dotted lines. Each graph is also labelled by the type of propagators it

contains, with S;F; V; g standing respectively for scalar, fermion, vector and ghost. Also,

the presence of mass insertions in fermion lines is indicated by the overlines in the labels

FFS and FFV . The results for these Feynman diagrams (plus counterterms) are reported

in sections 4, 5, and 6.

2.3 Two-loop integral functions needed for vacuum graphs

All of the e�ective potential two-loop integrals can be expressed in terms of linear combi-

nations of functions introduced and studied by Ford, Jack and Jones in [7]. I will follow a

notation similar but not identical to theirs: the functions I(x; y; z), J(x; y), and J(x) used

here are equal to the �-independent parts of the functions Î(x; y; z), Ĵ(x; y), and J(x) used

in ref. [7], up to obvious factors of 1=16�2. Explicitly, I choose to express results in terms of:

J(x) = x(lnx� 1); (2.17)

J(x; y) = xy(lnx� 1)(lny � 1); (2.18)

I(x; y; z) =
1

2
(x� y � z)lnylnz +

1

2
(y � x� z)lnxlnz +

1

2
(z � x� y)lnxlny

+2xlnx+ 2ylny + 2zlnz � 5

2
(x+ y + z)� 1

2
�(x; y; z) : (2.19)

Here �(x; y; z) was originally found in terms of Lobachevskiy's function or related integrals

in ref. [7] using methods developed in [11, 12], but it can also be expressed [13, 14, 15] in

terms of dilogarithms according to (for x; y � z):

�(x; y; z) = R
n
2ln[(z + x� y �R)=2z]ln[(z + y � x�R)=2z] � ln(x=z)ln(y=z)

�2Li2[(z + x� y �R)=2z] � 2Li2[(z + y � x�R)=2z] + �2=3
o

(2.20)

with

R = [x2 + y2 + z2 � 2xy � 2xz � 2yz]1=2: (2.21)
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SSS SS FFS FFS

SSV V S V V S FFV

FFV V V V V V ggV

Figure 2: The one-particle-irreducible connected Feynman diagrams contributing to the two-
loop e�ective potential. Dashed lines denote real scalars, solid lines denote Weyl fermions
carrying helicity along the arrow direction, wavy lines are for vector bosons, and dotted lines
are for ghosts. The large dots between opposing arrows on the fermion lines in the FFS and
FFV diagrams denote mass insertions. The FFS diagram is accompanied by its complex
conjugate (the same diagram with all arrows reversed).
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The dilogarithm function is de�ned in the standard [16] way for any complex z:

Li2(z) = �
Z z

0

ln(1� t)

t
dt: (2.22)

To resolve branch cut ambiguities which could arise, consistently choose Arg(R) = 0 or �=2

along with

� � < Im[ln(z)] � � (2.23)

for all logarithms of negative or complex z, including the logarithm appearing in the integral

de�nition of the dilogarithm. So, for example, when x is real and greater than 1,

Im[Li2(x)] = �i�ln(x); (2.24)

Im[Li2(x� iÆ)] = �i�ln(x); (2.25)

for Æ real and in�nitesimal, while Im[Li2(x)] = 0 if x is real and less than 1. The functions

�(x; y; z) and therefore I(x; y; z) are invariant under interchange of any two of x; y; z.

It is useful to have expressions for these functions in the special cases of vanishing argu-

ments. In addition to the trivial identities J(0) = 0, J(x; 0) = J(0; x) = 0 and I(0; 0; 0) = 0,

one �nds [15]:

I(0; x; y) = (x� y)

"
Li2(y=x)� ln(x=y)ln(x� y) +

1

2
(lnx)2 � �2

6

#

�5

2
(x+ y) + 2xlnx+ 2ylny � xlnxlny; (2.26)

I(0; x; x) = 2J(x)� 2x� 1

x
J(x; x) = �x(lnx)2 + 4xlnx� 5x; (2.27)

I(0; 0; x) = �1

2
x(lnx)2 + 2xlnx� 5

2
x� �2

6
x: (2.28)

It is also sometimes useful to expand these functions for in�nitesimal arguments:

I(Æ; x; y) = I(0; x; y) + Æ
n
�(x+ y)I(0; x; y)� 2J(x; y) + 3xJ(x) + 3yJ(y)� yJ(x)

�xJ(y)� (x+ y)2 + (x� y)[J(y)� J(x)]lnÆ
o
=(x � y)2 + : : : ; (2.29)

I(Æ; x; x) = 2J(x)� 2x� 1

x
J(x; x)

+Æ

(
4 +

1

2x2
J(x; x) +

3

x
J(x)� [1 +

J(x)

x
]lnÆ

)
+ : : : ; (2.30)

I(Æ1; Æ2; x) = I(0; 0; x) +
Æ1
x

h
�x� I(0; 0; x) + 3J(x)� J(x)lnÆ1

i

+
Æ2
x

h
�x� I(0; 0; x) + 3J(x)� J(x)lnÆ2

i
+
Æ1Æ2
x2

n
�2I(0; 0; x)

+4J(x)� 2x� [x+ J(x)](lnÆ1 + lnÆ2) + xlnÆ1lnÆ2
o
+ : : : ; (2.31)

where the ellipses stand for terms with more than one power of Æ or either Æ1 or Æ2.
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2.4 Conventions for softly-broken supersymmetric models

One of the main applications of the results of this paper is to models with softly broken super-

symmetry, such as the Minimal Supersymmetric Standard Model (MSSM). Therefore I now

list the relevant conventions to be used here for such models. In general, the superpotential

is given in terms of the chiral super�elds �i by

W =
1

6
Y ijk�i�j�k +

1

2
�ij�i�j ; (2.32)

and the soft supersymmetry-breaking part of the Lagrangian is

� Lsoft = (
1

6
aijk�i�j�k +

1

2
bij�i�j + ci�i +

1

2
M�a�a + c:c:) + (m2)ji�

�i�j + �; (2.33)

where the �i are the complex scalar �eld components of the �i, and the �a are the two-

component gaugino fermions with mass M . The parameter ci can only appear if there is a

gauge-singlet chiral super�eld in the theory. Note the presence of a vacuum energy term �.

This is required in order for the full e�ective potential to be RG invariant [17]-[20]. The two-

loop beta function for � is obtained in section 7, and the beta functions for each of the other

couplings at two-loop order are given in [21, 22, 9, 10], Flipping the heights on all indices of

a coupling implies complex conjugation, so Yijk = (Y ijk)�, �ij = (�ij)�, aijk = (aijk)�, etc.

The representation matrices for the chiral super�elds are denoted by (T a)ji . They satisfy

[T a; T b] = ifabcT c; (2.34)

where fabc are the totally antisymmetric structure constants of the gauge group G. Then

(T aT a)ji = C(i)Æji ; (2.35)

Tr[T aT b] = S(R)Æab; (2.36)

facdf bcd = CGÆ
ab (2.37)

de�ne the quadratic Casimir invariant C(i) for each representation, the total Dynkin index

S(R) summed over all representations, and the Casimir invariant of the adjoint representa-

tion. The dimension of the adjoint representation is

dG = Tr[C(i)]=S(R): (2.38)

I use a normalization such that each fundamental representation of SU(N) has C(i) =

(N2 � 1)=2N and contributes 1/2 to S(R).
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3 One-loop e�ective potential in the MS, DR, and DR
0

schemes

In this section, I review the known answers for the one-loop e�ective potential. This will

allow us to carefully distinguish the results in the MS, DR, and DR
0
schemes.

In the MS scheme and Landau gauge, one has

V
(1)

MS
= V

(1)
S + V

(1)
F + V

(1)
V (3.1)

where the di�erent contributions arise from scalars, fermions, and vectors going around the

loop in �gure 1:

V
(1)
S =

1

4

X
i

(m2
i )
2(lnm2

i � 3=2); (3.2)

V
(1)
F = �1

2

X
I

(m2
I)
2(lnm2

I � 3=2); (3.3)

V
(1)
V =

3

4

X
a

(m2
a)

2(lnm2
a � 5=6): (3.4)

The appearance of 5=6 rather than 3=2 in V
(1)
V is due to the fact that there are only 4� 2�,

rather than 4, vector degrees of freedom in MS.

In the DR scheme, one must include also the e�ects of the epsilon scalars. Now, it is

tempting to assume that the epsilon scalars have the same �eld-dependent mass as their

4 � 2� vector counterparts. However, as pointed out in ref. [9], this is actually inconsistent

except in models with exact supersymmetry, unless one sticks to only one �xed value of

the renormalization scale Q, because the epsilon-scalar squared mass has a beta function

which is not homogeneous. Therefore, in general one must allow the epsilon scalars to have

squared-mass eigenvalues m̂2
a which are distinct from the m2

a for the ordinary vectors. To

be speci�c, consider the explicit form of the �eld-dependent squared-mass matrix for the

ordinary 4 � 2� vector �elds:

m2
ab = 2g2��i(T aT b)ji�j: (3.5)

This has eigenvalues m2
a. For the epsilon-scalar squared-mass matrix, one has instead:

m̂2
ab = 2g2��i(T aT b)ji�j + Æabm

2
� ; (3.6)

where m2
� is an \evanescent" [23] parameter. This matrix requires an orthogonal diagonal-

ization matrix N (�) which di�ers from N (V ):

N (�)
ac m̂

2
cdN

(�)
bd = Æabm̂

2
a: (3.7)
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Unless supersymmetry is not explicitly broken, the eigenvalues m̂2
a will in general di�er

from m2
a, and the corresponding couplings of the squared-mass eigenstate epsilon scalars are

di�erent from the couplings of squared-mass eigenstate vectors, because N (�) di�ers from

N (V ).

In the DR scheme, with epsilon scalars included, one now �nds

V
(1)

DR
= V

(1)
S + V

(1)
F + V

(1)
V + V (1)

� (3.8)

where V (1)
S , V (1)

F , V (1)
V are as before, and

V (1)
� = �1

2

X
a

(m̂2
a)

2: (3.9)

However, m2
� is an additional parameter with no physically observable counterpart, and

so its appearance in the e�ective potential is quite inconvenient. The functional form of the

e�ective potential is also not directly physically observable, so there is no contradiction; m2
�

must cancel only from observable quantities. However, clearly one would like to avoid having

to include a distinct epsilon-scalar mass in calculations in the �rst place. This problem was

solved in the context of softly broken supersymmetricmodels in ref. [10] with the introduction

of the DR
0
scheme. The point is that one can remove the dependence of the full one-loop

e�ective potential on m2
� by rede�ning the ordinary scalar squared masses and the vacuum

energy term appearing in the tree-level part eq. (2.33):

(m2
DR

0)ji = (m2
DR
)ji �

1

16�2

h
Æji 2g

2C(i)m2
�

i
; (3.10)

�
DR

0 = �DR �
1

16�2
(m2

� )
2

2
: (3.11)

The result is the DR
0
scheme, and the e�ective potential in this scheme is the one usually

quoted in the literature (and often slightly incorrectly referred to as the DR one):

V
(1)

DR
0 =

X
n

(�1)2sn(2sn + 1)h(m2
n) = STr

h
h(m2

n)
i
; (3.12)

where

h(x) =
x2

4

h
ln(x)� 3=2

i
; (3.13)

and n runs over all real scalar, Weyl fermion, and vector degrees of freedom. The scalar

squared masses occurring in eq. (3.12) are the ones following from the rede�nition in eq. (3.10),

and the vector squared masses are the eigenvalues of eq. (3.5). The DR
0
e�ective potential
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is both manifestly supersymmetric when the soft terms vanish, and independent of the un-

physical evanescent parameter m2
� when the soft terms do not vanish. It is not hard to see

that m2
� is simultaneously banished from the equations which relate the physical pole masses

to the Q-dependent running masses in the theory, so it has been successfully decoupled from

all practical calculations. It would be quite clumsy to use the original DR scheme in stud-

ies of realistic models like the MSSM, since in RG running and evaluation of the e�ective

potential one would have to keep extra contributions from epsilon-scalar masses in order to

avoid inconsistencies. Therefore the DR
0
scheme is the preferred one.

After making this painful distinction, it must be admitted that the DR
0
�nal result for

the e�ective potential has exactly the same form that one would have obtained if one had

naively set m2
� equal to zero in the �rst place in the DR scheme calculation. However, this

naive procedure is technically inconsistent whenever RG running is involved [9] and does not

work for other calculations involving epsilon scalars, so one should really distinguish between

the two schemes as a matter of principle. The parameters appearing in the DR
0
e�ective

potential obey DR
0
renormalization group equations, which di�er from the DR ones with m2

�

set equal to 0.

The procedure of going from the DR scheme to the DR
0
scheme is similar at two loops,

and is described explicitly in section 6.

4 Two-loop e�ective potential in the MS scheme

The two-loop e�ective potential in the MS scheme for the general theory with masses and

couplings described by eqs. (2.6)-(2.14) can be computed by the methods described in [7]. In

fact, all of the hard work of evaluating the relevant Feynman loop integrals has already been

accomplished there; no new types of integrals arise. Momentum integrals and vector indices

each run over 4� 2� dimensions. For each two-loop diagram, one must include counterterms

for the various one-loop divergent subdiagrams. The result still includes single and double

poles in �, which are then simply removed by two-loop counterterms in modi�ed minimal

subtraction. The �nal result can be divided into parts corresponding to the various graphs

of �gure 2. Because the V V , V V V , and ggV graphs all involve the same �eld-dependent

coupling gabc, it is natural to combine their contributions into a pure gauge piece V (2)
gauge.

For the result, I �nd:

V (2) = V
(2)
SSS + V

(2)
SS + V

(2)
FFS + V

(2)

FFS
+ V

(2)
SSV + V

(2)
V S + V

(2)
V V S
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+V
(2)
FFV + V

(2)

FFV
+ V (2)

gauge; (4.1)

where, in terms of the masses and couplings as speci�ed in eqs. (2.6)-(2.14),

V
(2)
SSS =

1

12
(�ijk)2fSSS(m

2
i ;m

2
j ;m

2
k); (4.2)

V
(2)
SS =

1

8
�iijjfSS(m

2
i ;m

2
j); (4.3)

V
(2)
FFS =

1

2
jyIJkj2fFFS(m2

I;m
2
J ;m

2
k); (4.4)

V
(2)

FFS
=

1

4
yIJkyI

0J 0kM�
II 0M

�
JJ 0fFFS(m

2
I ;m

2
J ;m

2
k) + c:c:; (4.5)

V
(2)
SSV =

1

4
(gaij)2fSSV (m

2
i ;m

2
j ;m

2
a); (4.6)

V
(2)
V S =

1

4
gaaiifV S(m

2
a;m

2
i ); (4.7)

V
(2)
V V S =

1

4
(gabi)2fV V S(m

2
a;m

2
b ;m

2
i ); (4.8)

V
(2)
FFV =

1

2
jgaJI j2fFFV (m2

I;m
2
J ;m

2
a); (4.9)

V
(2)

FFV
=

1

2
gaJI g

aJ 0

I 0 M
II 0M�

JJ 0fFFV (m
2
I;m

2
J ;m

2
a); (4.10)

V (2)
gauge =

1

12
(gabc)2fgauge(m

2
a;m

2
b;m

2
c); (4.11)

in which all indices on the right side are summed over. The loop-integral functions appearing

here are given by:

fSSS(x; y; z) = �I(x; y; z); (4.12)

fSS(x; y) = J(x; y); (4.13)

fFFS(x; y; z) = J(x; y)� J(x; z)� J(y; z) + (x+ y � z)I(x; y; z); (4.14)

fFFS(x; y; z) = 2I(x; y; z); (4.15)

fSSV (x; y; z) =
1

z

n
(�x2 � y2 � z2 + 2xy + 2xz + 2yz)I(x; y; z) + (x� y)2I(0; x; y)

+(y � x� z)J(x; z) + (x� y � z)J(y; z) + zJ(x; y)
o

+2(x+ y � z=3)J(z); (4.16)

fV S(x; y) = 3J(x; y) + 2xJ(y); (4.17)

fV V S(x; y; z) =
1

4xy

n
(�x2 � y2 � z2 � 10xy + 2xz + 2yz)I(x; y; z)

+(x� z)2I(0; x; z) + (y � z)2I(0; y; z)� z2I(0; 0; z)

+(z � x� y)J(x; y) + yJ(x; z) + xJ(y; z)
o

+
1

2
J(x) +

1

2
J(y) + 2J(z)� x� y � z; (4.18)

15



fFFV (x; y; z) =
1

z

n
(x2 + y2 � 2z2 � 2xy + xz + yz)I(x; y; z)� (x� y)2I(0; x; y)

+(x� y � 2z)J(x; z) + (y � x� 2z)J(y; z) + 2zJ(x; y)
o

+2(�x� y + z=3)J(z)� 2xJ(x)� 2yJ(y) + (x+ y)2 � z2; (4.19)

fFFV (x; y; z) = 6I(x; y; z) + 2(x+ y + z)� 4J(x)� 4J(y); (4.20)

fgauge(x; y; z) =
1

4xyz

n
(�x4 � 8x3y � 8x3z + 32x2yz + 18y2z2)I(x; y; z)

+(y � z)2(y2 + 10yz + z2)I(0; y; z) + x2(2yz � x2)I(0; 0; x)

+(x2 � 9y2 � 9z2 + 9xy + 9xz + 14yz)xJ(y; z)

+4x3yz + 48xy2z2 + (22y + 22z � 16x=3)xyzJ(x)
o

+(x$ y) + (x$ z): (4.21)

Symmetry factors have been explicitly factored out of eqs. (4.2)-(4.11), but fermion-loop

minus signs and other factors associated with the evaluation of the Feynman diagrams

are contained in the de�nitions of the functions. The functions obey obvious symme-

tries: fSSS(x; y; z) and fgauge(x; y; z) are invariant under interchange of any two of x; y; z,

while fSS(x; y), fFFS(x; y; z), fFFS(x; y; z), fSSV (x; y; z), fV V S(x; y; z), fFFV (x; y; z), and

fFFV (x; y; z) are each invariant under interchange of x; y.

The functions involving vector �elds contain factors 1=x, 1=y, and 1=z which appear to

be singular in the massless vector limit. This is due to the appearance in the Landau gauge

of vector propagators

1

i

 
��� � p�p�=p2

p2 +m2 � i�

!
; (4.22)

which give rise to factors

1

p2(p2 +m2)
=

1

m2

 
1

p2
� 1

p2 +m2

!
(4.23)

in the loop integrals. The massless limits are actually smooth, and arise often in practice. It is

therefore useful to have explicit expressions for those massless limits that are not immediately

obvious. Using eqs. (2.29)-(2.31), they are found to be:

fSSV (x; y; 0) = (x+ y)2 + 3(x+ y)I(x; y; 0) + 3J(x; y)� 2xJ(x)� 2yJ(y); (4.24)

fV V S(x; 0; z) = �3x

4
� z

2
� 3z

4x
I(0; 0; z) + (

3z

4x
� 9

4
)I(0; x; z) +

3

4x
J(x; z)

+2J(z); (4.25)

fV V S(0; 0; z) = �3I(0; 0; z) + 7

2
J(z)� 5z

4
; (4.26)
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fFFV (x; y; 0) = 0; (4.27)

fgauge(x; y; 0) =
1

4xy

n
(43x2y + 43xy2 � 7x3 � 7y3)I(0; x; y)

+(2y + 7x)x2I(0; 0; x) + (2x+ 7y)y2I(0; 0; y)

+(34xy � 7x2 � 7y2)J(x; y)
o
+ 4x2 + 4y2 +

35

2
xy

�19

3
[xJ(x) + yJ(y)] + 5[yJ(x) + xJ(y)]; (4.28)

fgauge(x; 0; 0) = 13xI(0; 0; x)� 59

6
xJ(x) +

23

4
x2: (4.29)

All of the functions vanish (by dimensional analysis) whenever all arguments vanish.

It may also be of interest to see the individual contributions of the Feynman diagrams

labelled V V , V V V , and ggV in �gure 2, even though these can always be combined into

V (2)
gauge. These contributions are listed in Appendix A.

The classic results of Ford, Jack and Jones for the Standard Model [7] are a particularly

useful special case of those found in this section, with which I have checked agreement. In

fact, each type of term that can occur in a general model in MS does in fact arise in the Stan-

dard Model case; no new types of integrals arise, so that the results of eqs. (4.12)-(4.21) could

be inferred from [7] by some forensic combinatorics. Their functions A(x; y; z), B(x; y; z),

C(x; y), D(x; y; z), E(x; y), �(x; y), and �(x; y; z) are respectively equal to the functions

fSSV (x; y; z), �fV V S(x; y; z), fV S(x; y), �fFFV (x; y; z), pxyfFFV (x; y; z), fV V (x; y), and
�fV V V (x; y; z) given in this section and in Appendix B. [Note that after the published

errata of ref. [7], a few further minor typographical errors have been recently corrected in

the eprint archive version.]

5 Two-loop e�ective potential in the DR scheme

In this section, I report the results for the e�ective potential in the DR scheme. These

are obtained by keeping all 4 components of each vector �eld, but performing momentum

integrations in 4 � 2� dimensions. The di�erence, compared to the results for MS, can be

organized in terms of the extra epsilon scalars with multiplicity 2�. Of course, the SSS, SS,

FFS, and FFS diagrams in �g. 2 are una�ected by this procedure. Also, the SSV and

ggV diagrams are unchanged in going from MS to DR, because in those cases all the vector

indices are contracted with a loop momentum. The V S, FFV and FFV diagrams yield new

contributions, which we can call �S, FF� and FF�, when the vector line in each case is turned

into an epsilon-scalar line. In the VVS diagram, a non-vanishing additional contribution
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arises only when both vectors are turned into epsilon scalars; call this contribution ��S. In

the V V diagram, one or both of the vector lines can become an epsilon scalar, yielding

contributions to be called �V and �� respectively. Finally, in the V V V diagram, any two of

the vector lines can be turned into epsilon-scalar lines, resulting in a contribution ��V .

As discussed in section 3, the couplings of epsilon scalars have exactly the form indicated

for vectors in eqs. (2.12)-(2.14), except that when an epsilon scalar is involved, the rotation

to the squared-mass eigenstate basis requires N (�) rather than N (V ). This distinction is

indicated by replacing the vector index a; b; c; : : : by an epsilon-scalar index â; b̂; ĉ; : : : on

the couplings. For example [compare to eqs. (2.15)-(2.16)], the epsilon scalar-epsilon scalar-

vector, epsilon scalar-vector-vector, and fermion-fermion-epsilon scalar couplings are

gâbc = gf efgN (�)
ae N

(V )
bf N (V )

cg ; (5.1)

gâb̂c = gf efgN (�)
ae N

(�)
bf N

(V )
cg ; (5.2)

gâJI = g(T b)KLN
(F )�
JK N

(F )
IL N

(�)
ab : (5.3)

Then the result in the DR scheme can be written

V
(2)

DR
= V

(2)

MS
+ V

(2)
�S + V

(2)
��S + V

(2)
FF� + V

(2)

FF �
+ V

(2)
�V + V (2)

�� + V
(2)
��V ; (5.4)

where

V
(2)
�S =

1

4
gââiif�S(m̂

2
a;m

2
i ); (5.5)

V
(2)
��S =

1

4
(gâb̂i)2f��S(m̂

2
a; m̂

2
b ;m

2
i ); (5.6)

V
(2)
FF� =

1

2
jgâJI j2fFF�(m2

I;m
2
J ; m̂

2
a); (5.7)

V
(2)

FF �
=

1

2
gâJI gâJ

0

I 0 M
II 0M�

JJ 0fFF�(m
2
I;m

2
J ; m̂

2
a); (5.8)

V
(2)
�V =

1

2
(gâbc)2f�V (m̂

2
a;m

2
b); (5.9)

V (2)
�� =

1

4
(gâb̂c)2f��(m̂

2
a; m̂

2
b); (5.10)

V
(2)
��V =

1

4
(gâb̂c)2f��V (m̂

2
a; m̂

2
b;m

2
c); (5.11)

with the loop functions given by:

f�S(x; y) = �2xJ(y); (5.12)

f��S(x; y; z) = �2J(z) + x+ y + z; (5.13)

fFF�(x; y; z) = 2xJ(x) + 2yJ(y)� (x+ y)2 + z2; (5.14)
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fFF�(x; y; z) = 4J(x) + 4J(y)� 2x� 2y � 2z; (5.15)

f�V (x; y) = �4xy � 6xJ(y); (5.16)

f��(x; y) = 4xy; (5.17)

f��V (x; y; z) = �x2 � y2 + z2 � 6xy � xz � yz + (6x+ 6y � 2z)J(z): (5.18)

This completes the result for the two-loop e�ective potential in the DR scheme.

6 Two-loop e�ective potential in the DR
0
scheme

As explained in the Introduction and in section 3, it is convenient in models of softly broken

supersymmetry to go to the DR
0
scheme. This scheme is de�ned so that m2

� (the di�erence

between the squared masses of epsilon scalars and their vector counterparts) does not appear

in the beta functions of other couplings, or in the e�ective potential, or in the equations

relating pole masses to running masses. Starting from the DR results of the previous section,

I �nd that this is done at two-loop order by the following parameter rede�nition of soft terms

appearing in eq. (2.33):

(m2
DR

0)ji = (m2
DR

)ji �
1

16�2

h
Æji 2g

2C(i)m2
�

i
+

1

(16�2)2

n
Y iklYjklg

2[C(k)� 1

2
C(i)]m2

�

+Æji g
4C(i) [2S(R) + 4C(i)� 6CG]m

2
�

o
; (6.1)

ci
DR

0 = ci
DR

+
1

(16�2)2

h
Y ijk�jkg

2C(j)m2
�

i
; (6.2)

�
DR

0 = �DR �
1

16�2
(m2

�)
2

2
+

1

(16�2)2

ng2
2
dG[S(R)�CG](m

2
�)
2

+g2dGCGjM j2m2
� + g2�ij�ijC(i)m

2
�

o
: (6.3)

If there is more than one simple or U(1) group, then each of the correction terms should

be summed over subgroups. Following these rede�nitions, the result for the full two-loop

e�ective potential turns out to have the same functional form as if one naively took the DR

result and set m2
� to 0, removing the distinction between N (�) and N (V ), between hatted and

unhatted vector squared-mass eigenstate indices on the couplings, and between m̂2
a and m

2
a.

It is therefore convenient to de�ne functions which combine the e�ects of the 4� 2� vectors

and the epsilon scalars:

FV S(x; y) = fV S(x; y) + f�S(x; y); (6.4)

FV V S(x; y; z) = fV V S(x; y; z) + f��S(x; y; z); (6.5)

FFFV (x; y; z) = fFFV (x; y; z) + fFF�(x; y; z); (6.6)
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FFFV (x; y; z) = fFFV (x; y; z) + fFF �(x; y; z); (6.7)

Fgauge(x; y; z) = fgauge(x; y; z) + f��V (x; y; z) + f��V (z; x; y) + f��V (y; z; x)

+f�V (x; y) + f�V (y; x) + f�V (x; z) + f�V (z; x) + f�V (y; z) + f�V (z; y)

+f��(x; y) + f��(x; z) + f��(y; z): (6.8)

Note that I use F 's rather than f 's to distinguish the DR
0
functions from the corresponding

MS functions.

Therefore, the DR
0
two-loop e�ective potential is given by:

V (2) = V
(2)
SSS + V

(2)
SS + V

(2)
FFS + V

(2)

FFS
+ V

(2)
SSV + V

(2)
V S + V

(2)
V V S

+V (2)
FFV + V

(2)

FFV
+ V (2)

gauge; (6.9)

where now

V
(2)
SSS =

1

12
(�ijk)2fSSS(m

2
i ;m

2
j ;m

2
k); (6.10)

V
(2)
SS =

1

8
�iijjfSS(m

2
i ;m

2
j); (6.11)

V
(2)
FFS =

1

2
jyIJkj2fFFS(m2

I;m
2
J ;m

2
k); (6.12)

V
(2)

FFS
=

1

4
yIJkyI

0J 0kM�
II 0M

�
JJ 0fFFS(m

2
I ;m

2
J ;m

2
k) + c:c:; (6.13)

V
(2)
SSV =

1

4
(gaij)2fSSV (m

2
i ;m

2
j ;m

2
a); (6.14)

V
(2)
V S =

1

4
gaaiiFV S(m

2
a;m

2
i ); (6.15)

V
(2)
V V S =

1

4
(gabi)2FV V S(m

2
a;m

2
b;m

2
i ); (6.16)

V
(2)
FFV =

1

2
jgaJI j2FFFV (m2

I ;m
2
J ;m

2
a); (6.17)

V
(2)

FFV
=

1

2
gaJI g

aJ 0

I 0 M
II 0M�

JJ 0FFFV (m
2
I ;m

2
J ;m

2
a); (6.18)

V (2)
gauge =

1

12
(gabc)2Fgauge(m

2
a;m

2
b;m

2
c): (6.19)

Here fSSS(x; y; z), fSS(x; y), fFFS(x; y; z), fFFS(x; y; z), and fSSV (x; y; z) are given by ex-

actly the same functions as in MS, eqs. (4.12)-(4.16). The new functions are given by:

FV S(x; y) = 3J(x; y); (6.20)

FV V S(x; y; z) =
1

4xy

n
(�x2 � y2 � z2 � 10xy + 2xz + 2yz)I(x; y; z)

+(x� z)2I(0; x; z) + (y � z)2I(0; y; z)� z2I(0; 0; z)

+(z � x� y)J(x; y) + yJ(x; z) + xJ(y; z)
o
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+
1

2
J(x) +

1

2
J(y); (6.21)

FFFV (x; y; z) =
1

z

n
(x2 + y2 � 2z2 � 2xy + xz + yz)I(x; y; z)� (x� y)2I(0; x; y)

+(x� y � 2z)J(x; z) + (y � x� 2z)J(y; z) + 2zJ(x; y)
o

+2(�x� y + z=3)J(z); (6.22)

FFFV (x; y; z) = 6I(x; y; z); (6.23)

Fgauge(x; y; z) =
1

4xyz

n
(�x4 � 8x3y � 8x3z + 32x2yz + 18y2z2)I(x; y; z)

+(y � z)2(y2 + 10yz + z2)I(0; y; z) + x2(2yz � x2)I(0; 0; x)

+(x2 � 9y2 � 9z2 + 9xy + 9xz + 14yz)xJ(y; z)

+(22y + 22z � 40x=3)xyzJ(x)
o

+(x$ y) + (x$ z): (6.24)

Despite the appearance of x; y; z in the denominators, these functions again all have

smooth limits for x; y; z! 0. The non-trivial ones are

FV V S(x; 0; z) =
x

4
+
z

2
� 3z

4x
I(0; 0; z) + (

3z

4x
� 9

4
)I(0; x; z) +

3

4x
J(x; z); (6.25)

FV V S(0; 0; z) = �3I(0; 0; z) + 3

2
J(z)� z

4
; (6.26)

FFFV (x; y; 0) = �(x+ y)2 + 2xJ(x) + 2yJ(y); (6.27)

Fgauge(x; y; 0) =
1

4xy

n
(43x2y + 43xy2 � 7x3 � 7y3)I(0; x; y)

+(2y + 7x)x2I(0; 0; x) + (2x + 7y)y2I(0; 0; y)

+(34xy � 7x2 � 7y2)J(x; y)
o
+ 3x2 + 3y2 +

11

2
xy

�25

3
[xJ(x) + yJ(y)] + 5[yJ(x) + xJ(y)]; (6.28)

Fgauge(0; 0; x) = 13xI(0; 0; x)� 71

6
xJ(x) +

19

4
x2: (6.29)

Also, it may be of interest to see the contributions from individual graphs to Fgauge(x; y; z).

Those are listed in Appendix A.

This completes the result for the two-loop e�ective potential in the DR
0
scheme. These

are appropriate for use in any softly broken supersymmetric model, including the MSSM.

Partial results for the MSSM corresponding to the leading contributions proportional to �Sy2t

and y4t have been given in refs. [30] and [15]. Several illustrative examples and consistency

checks are done in section 8.
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7 Renormalization group invariance of the two-loop ef-

fective potential in softly broken supersymmetry

In general, the condition for RG invariance of the e�ective potential is

Q
dV

dQ
=

 
Q
@

@Q
+
X
I

��I
@

@�I
�X

i


(S)
i �i

@

@�i

!
V = 0: (7.1)

Here, �I are all of the running parameters of the model with beta functions ��I , and 
(S)
i are

the anomalous dimensions of the scalar �elds �i. At one- and two-loop order, this means

Q
@

@Q
V (1) +

"X
I

�
(1)
�I

@

@�I
�X

i


(S;1)
i �i

@

@�i

#
V (0) = 0; (7.2)

Q
@

@Q
V (2) +

"X
I

�
(1)
�I

@

@�I
�X

i


(S;1)
i �i

@

@�i

#
V (1)

+

"X
I

�
(2)
�I

@

@�I
�X

i


(S;2)
i �i

@

@�i

#
V (0) = 0: (7.3)

In softly broken supersymmetry, I �nd that the anomalous dimension matrix for scalar

�elds in the Landau gauge and in either DR or DR
0
is


(S)j
i =

1

16�2

(S;1)j
i +

1

(16�2)2

(S;2)j
i ; (7.4)


(S;1)j
i =

1

2
YiklY

jkl � Æji g
2C(i); (7.5)


(S;2)j
i = �1

2
YimnY

nklYklrY
mrj + YiklY

jklg2[2C(k)� C(i)]

+Æji g
4C(i)[S(R) + 2C(i)� 9

4
CG]: (7.6)

This can be obtained starting from the general results in the MS scheme in ref. [24], and

then applying the coupling constant rede�nitions needed to transform from the MS to the

DR or DR
0
scheme [25]. The eigenvalues of this matrix constrained to the subspace of

the classical scalar background �elds give the anomalous dimensions appearing in eqs. (7.2)

and (7.3). It should be noted that because of gauge-�xing, the Landau gauge scalar �eld

anomalous dimension matrix (S)ji relevant for the e�ective potential is not the same as the

more widely-known, gauge-invariant, anomalous dimension matrix of the chiral super�elds.

For comparison, the latter is [26]

ji =
1

16�2

(1)j
i +

1

(16�2)2

(2)j
i ; (7.7)


(1)j
i =

1

2
YiklY

jkl � 2Æji g
2C(i); (7.8)
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(2)j
i = �1

2
YimnY

nklYklrY
mrj + YiklY

jklg2[2C(k)�C(i)]

+Æji g
4C(i)[2S(R) + 4C(i)� 6CG]: (7.9)

In order for the e�ective potential to satisfy eq. (7.1) in a model with explicit supersym-

metry breaking, it is necessary to include a running vacuum energy term �, as in eq. (2.33).

Now using the results of section 6, one can derive the DR
0
beta function for � up to two loops

in a general softly-broken supersymmetric model as speci�ed in subsection 2.4, by looking

at the �i-independent piece of eqs. (7.2)-(7.3). I �nd

�� =
1

16�2
�
(1)
� +

1

(16�2)2
�
(2)
� (7.10)

�
(1)
� = (m2)ji (m

2)ij + 2(m2)ji�
ik�kj + bijbij � dGjM j4; (7.11)

�
(2)
� = g2dGjM j4[4S(R) � 8CG] + 8g2jM j2�ij�ijC(i) + 8g2(m2)ji�

ik�kjC(i)

+4g2(m2)ji (m
2)ijC(i) + 4g2bijbijC(i)� 4g2M�ijbijC(i)� 4g2M��ijb

ijC(i)

�Y ijkYijl
h
(m2)mk (m

2)lm + (m2)mk �mn�
nl + �km�

mn(m2)ln + �km(m
2)mn �

nl + bkmb
ml
i

�aijkaijl
h
(m2)lk + �km�

ml
i
� 2Y ijkYilm(m

2)lj�
mn�nk

�Y ijkaijl�kmb
ml � Yijka

ijl�kmbml: (7.12)

where dG is the dimension of the adjoint representation of the group. If the gauge group

contains more than one simple or U(1) component, then terms involving the gaugino mass

M or g2 should be summed over subgroups in eqs. (7.5)-(7.6), (7.8)-(7.9), and (7.11)-(7.12),

Special cases of these general results will be used in the next section.

8 Examples and consistency checks

In this section, I study some examples chosen as consistency checks and useful points of

reference for the results given above. The examples are all based on supersymmetry with

or without soft breaking, so the DR
0
scheme is used. One type of consistency check follows

from the requirement that the two-loop e�ective potential satis�es RG invariance in con-

junction with the known two-loop beta functions [21, 22, 9, 10], and the scalar anomalous

dimensions and �� found in the previous section. The derivatives of the loop functions are

listed in Appendix B. Another type of check relies on the fact that the e�ective potential

for a supersymmetric theory in a supersymmetric vacuum must vanish. These consistency

checks rely on non-trivial cancellations between di�erent two-loop functions, which are made

manifest by writing them in terms of the basis functions I(x; y; z), J(x; y), and J(x), using

eqs. (4.12)-(4.16) and (6.20)-(6.29).
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8.1 The Wess-Zumino Model

Consider the Wess-Zumino model [27] with a single chiral supermultiplet � containing a

Weyl fermion  and a complex scalar �+ (R + iI)=
p
2; where � is the classical background,

and R, I are real scalar quantum uctuations. The superpotential is given by

W =
�

2
�2 +

y

6
�3; (8.1)

where � and y are mass and coupling parameters, taken to be real without loss of generality.

The �elds R, I,  are mass eigenstates, with

m2
R = �2 + 3y��+ 3y2�2=2; (8.2)

m2
I = �2 + y��+ y2�2=2; (8.3)

m = � + y�: (8.4)

The tree-level scalar potential is

V (0) = �2�2 + y��3 + y2�4=4; (8.5)

and the one-loop contribution to the e�ective potential is given in terms of the function h(x)

in eq. (3.13) by

V (1) = h(m2
R) + h(m2

I)� 2h(m2
 ): (8.6)

The non-zero scalar quartic and cubic couplings are:

�RRRR = �IIII = 3y2=2; (8.7)

�RRII = y2=2; (8.8)

�RRR = 3y(� + y�)=
p
2; (8.9)

�RII = y(�+ y�)=
p
2; (8.10)

and the Yukawa interactions are

y  R = y=
p
2; (8.11)

y  I = iy=
p
2: (8.12)

It follows that the contributions to the two-loop e�ective potential are:

V
(2)
SSS =

y2

8
(�+ y�)2

h
3fSSS (m

2
R;m

2
R;m

2
R) + fSSS(m

2
R;m

2
I;m

2
I)
i
; (8.13)
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V
(2)
SS =

y2

16

h
3fSS (m

2
R;m

2
R) + 3fSS (m

2
I;m

2
I) + 2fSS(m

2
R;m

2
I)
i
; (8.14)

V
(2)
FFS =

y2

4

h
fFFS(m

2
 ;m

2
 ;m

2
R) + fFFS(m

2
 ;m

2
 ;m

2
I)
i
; (8.15)

V
(2)

FFS
=

y2

4
m2
 

h
fFFS(m

2
 ;m

2
 ;m

2
R)� fFFS(m

2
 ;m

2
 ;m

2
I)
i
: (8.16)

Now one may check RG invariance of the e�ective potential. At one-loop order, one �nds

from eq. (8.6) that

Q
@

@Q
V (1) = �y2�2�2 � y3��3 � y4�4=4: (8.17)

The one-loop scalar anomalous dimension and beta functions are


(S;1)
� = y2=2; (8.18)

�(1)� = y2�; (8.19)

�(1)y = 3y3=2: (8.20)

Therefore, from eq. (8.5):

X
I

�
(1)
�I

@

@�I
V (0) = 2y2�2�2 + 5y3��3=2 + 3y4�4=4; (8.21)

�(S;1)� �
@

@�
V (0) = �y2�2�2 � 3y3��3=2 � y4�4=2; (8.22)

where �I runs over y; �, so that eq. (7.2) is indeed satis�ed. At two-loop order, one �nds

from eqs. (8.13)-(8.16) and (B.5)-(B.8) that

Q
@

@Q
V (2) +

"X
I

�
(1)
�I

@

@�I
� 

(S;1)
� �

@

@�

#
V (1) = y4�2�2 + y5��3 + y6�4=4: (8.23)

From the two-loop RG scalar anomalous dimension and beta functions:


(S;2)
� = �y4=2; (8.24)

�(2)� = �y4�; (8.25)

�(2)y = �3y5=2; (8.26)

one also �nds:

X
I

�
(2)
�I

@

@�I
V (0) = �2y4�2�2 � 5y5��3=2 � 3y6�4=4; (8.27)

�(S;2)� �
@

@�
V (0) = y4�2�2 + 3y5��3=2 + y6�4=2: (8.28)
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The results of eqs. (8.23), (8.27) and (8.28) combine to verify eq. (7.3).

In the special case of � = 0, supersymmetry is not broken, and the e�ective potential

should vanish. At one-loop order, eq. (8.6) then vanishes trivially. At two-loop order,

V (2) =
y2

2

h
�2fSSS(�

2; �2; �2) + fSS(�
2; �2) + fFFS(�

2; �2; �2)
i
; (8.29)

which equals 0 by virtue of eqs. (4.12)-(4.14).

8.2 Supersymmetric QED in supersymmetric vacua

Let us now consider a supersymmetric U(1) gauge theory with coupling constant g and a

pair of chiral super�elds with charges �1.
First take the case that the chiral super�elds do not have a mass term before symmetry

breaking, and the two scalar �elds have the same classical background value �. Then the

gauge symmetry is broken, but supersymmetry remains unbroken since � parameterizes a

at direction. The vector boson, two Weyl fermions, and a real scalar �eld each obtain a

mass

x = 4g2�2: (8.30)

Together with a massless (in Landau gauge) real scalar Nambu-Goldstone boson, these form

a massive vector supermultiplet. In addition, there are two massless real scalars and one

massless Weyl fermion forming a chiral supermultiplet. The DR
0
one-loop e�ective potential

vanishes because of these mass degeneracies. The two-loop e�ective potential contributions

in the DR
0
scheme are:

V
(2)
SSS = g2x

�
1

2
fSSS (0; 0; x) + fSSS(0; x; x)

�
; (8.31)

V
(2)
FFS = g2 [fFFS(0; x; 0) + fFFS(0; x; x) + 2fFFS(x; x; 0)] ; (8.32)

V
(2)
SSV =

g2

2
[fSSV (0; 0; x) + fSSV (0; x; x)] ; (8.33)

V
(2)
V S =

g2

2
FV S(x; x); (8.34)

V
(2)
V V S = g2xFV V S(x; x; 0); (8.35)

V
(2)
FFV = g2FFFV (0; x; x); (8.36)

with the other contributions vanishing. One can now check by plugging in the results of

section 6 that the sum of eqs. (8.31)-(8.36) yields 0, as required for a supersymmetric vacuum.

This constitutes a non-trivial identity involving cancellations between di�erent two-loop
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functions which become apparent after writing them in terms of the functions I(x; y; z),

J(x; y) and J(x).

Another check which relies on a di�erent set of cancellations is obtained if we take � = 0

in the above model, but now include a superpotential mass term �. In that case, the vector

gauge boson and the gaugino are massless, and the real scalar �elds and the chiral fermions

all have squared mass �2. Then one obtains for the contributions to the two-loop e�ective

potential in the DR
0
scheme:

V
(2)
SS = g2fSS(�

2; �2); (8.37)

V
(2)
FFS = 4g2fFFS(0; �

2; �2); (8.38)

V
(2)
SSV = g2fSSV (�

2; �2; 0); (8.39)

V
(2)
FFV = g2FFFV (�

2; �2; 0); (8.40)

V
(2)

FFV
= �g2�2FFFV (�2; �2; 0); (8.41)

with all other contributions vanishing. Again one �nds from the results of section 6 that the

sum of eqs. (8.37)-(8.41) yields 0, as required for a supersymmetric vacuum.

8.3 Supersymmetric SU(Nc) gauge theory with one avor in su-

persymmetric vacua

A richer set of checks is found in non-abelian supersymmetric models. As an example,

consider supersymmetric SU(Nc) gauge theory with one avor of chiral super�elds Qi and

Q
i
in the fundamental and anti-fundamental representations, respectively. Here i = 1; : : : ; Nc

is a color index. Consider evaluation of the e�ective potential for the classical background:

hQii = hQii = Æi1�: (8.42)

These VEVs break the gauge symmetry according to SU(Nc)! SU(Nc � 1), but � param-

eterizes a at direction and supersymmetry is unbroken. Therefore the e�ective potential

must vanish at each order in perturbation theory for any value of �. My aim is to show this

explicitly.

The particle content for non-zero � consists of 2Nc�1 massive vector supermultiplets with

their associated massless (in Landau gauge) real scalar Nambu-Goldstone modes, N2
c � 2Nc

massless vector multiplets associated with the unbroken gauge symmetry, and one massless

singlet chiral supermultiplet. The non-zero squared-mass eigenvalues are

x = g2�2; (8.43)
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y =
2(Nc � 1)

Nc
g2�2; (8.44)

and the multiplicities of the mass eigenstates are shown in Table 1. Because of the mass

Table 1: Multiplicities of mass eigenstates in the model of section 8.3.

particle type m2 = 0 m2 = x m2 = y

real scalars 2Nc + 1 2Nc � 2 1

Weyl fermions N2
c � 2Nc + 1 4Nc � 4 2

vectors N2
c � 2Nc 2Nc � 2 1

degeneracies indicated in Table 1, the one-loop contribution to the e�ective potential vanishes

as required.

At two-loop order, I �nd the contributions in the DR
0
scheme to be

V
(2)
SSS = g4�2

"
Nc � 1

4
fSSS (0; 0; x) +

(Nc � 1)2

2N2
c

fSSS(0; 0; y) +
Nc � 1

2
fSSS(0; x; x)

+
(Nc � 1)2

N2
c

fSSS(0; y; y) +
(Nc � 2)2(Nc � 1)

4N2
c

fSSS(0; x; y)

#
; (8.45)

V
(2)
SS = 0; (8.46)

V
(2)
FFS = g2

"
2N2

c � 3Nc � 1

2
ffFFS(0; x; 0) + fFFS(0; x; x)g+ 3(Nc � 1)

2
fFFS(x; x; 0)

+
Nc � 1

2Nc
ffFFS(0; y; 0) + fFFS(0; y; y)g+ Nc � 1

Nc
fFFS(y; y; 0)

+
N2
c �Nc + 2

2Nc

ffFFS(x; y; 0) + fFFS(x; y; x)g+ Nc � 1

2
fFFS(x; x; y)

#
; (8.47)

V
(2)

FFS
= g4�2

"
Nc � 1

2
ffFFS(x; x; y)� fFFS(x; x; 0)g

+
2(Nc � 1)

Nc
ffFFS(x; y; x)� fFFS(x; y; 0)g

#
; (8.48)

V
(2)
SSV = g2

"
Nc � 1

2
fSSV (0; 0; x) +

1

4
fSSV (0; 0; y) +

Nc � 1

4Nc
fSSV (0; y; y)

+
Nc � 1

4
fSSV (0; x; x) +

Nc(Nc � 2)

4
fSSV (x; x; 0) +

1

4Nc

fSSV (x; x; y)

+
Nc � 1

4
fSSV (x; y; x)

#
; (8.49)

V
(2)
V S = g2

hNc � 1

2
FV S(x; x) +

Nc � 1

4
FV S(x; y) +

1

2Nc

FV S(y; x)
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+
Nc � 1

4Nc
FV S(y; y)

i
; (8.50)

V
(2)
V V S = g4�2

"
Nc(Nc � 2)

2
FV V S(0; x; 0) +

Nc � 1

2
FV V S(x; x; 0)

+
(Nc � 2)2

2Nc

FV V S(x; y; 0) +
(Nc � 1)2

N2
c

FV V S(y; y; 0)

#
; (8.51)

V
(2)
FFV = g2

"
2N2

c � 3Nc � 1

2
FFFV (0; x; x) +Nc(Nc � 2)FFFV (x; x; 0)

+
Nc � 1

2Nc
FFFV (0; y; y) +

N2
c + 1

2Nc
FFFV (x; x; y) +

3Nc � 1

2
FFFV (x; y; x)

#
;(8.52)

V
(2)

FFV
= �g4�2

"
Nc(Nc � 2)FFFV (x; x; 0) + FFFV (x; x; y)

+2(Nc � 1)FFFV (x; y; x)

#
; (8.53)

V (2)
gauge = g2

"
Nc(Nc � 2)

4
Fgauge(0; x; x) +

Nc

4
Fgauge(x; x; y)

#
: (8.54)

After some algebra, using eqs. (4.12)-(4.16) and (6.20)-(6.29), one �nds that the sum of these

contributions indeed vanishes, as required by unbroken supersymmetry in the at direction

parameterized by �.

8.4 Softly-broken supersymmetric QED

Consider the case of supersymmetric QED with a coupling g and two chiral super�elds with

charges �1, as in subsection 8.2. However, now we introduce supersymmetry-breaking e�ects

in the form of a gaugino mass M , and non-holomorphic soft supersymmetry-breaking scalar

squared masses m2
+ and m2

� for the scalar �elds of charge +1, �1 respectively. Instead

of equal VEVs, the scalar �elds of charge +1, �1 are taken to have classical background

values �, 0 respectively. Then the four real scalar mass eigenstates obtain squared masses

x1; x1; x2; x3 where

x1 = m2
� � g2�2; (8.55)

x2 = m2
+ + g2�2; (8.56)

x3 = m2
+ + 3g2�2; (8.57)

and the three fermion mass eigenstates obtain squared masses 0; y1; y2, with

y1 = [M2 + 4g2�2 �M
q
M2 + 8g2�2]=2; (8.58)

y2 = [M2 + 4g2�2 +M
q
M2 + 8g2�2]=2; (8.59)
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while the vector boson obtains a mass

z = 2g2�2: (8.60)

Because supersymmetry is explicitly broken, RG invariance requires that a vacuum-energy �

is included among the soft supersymmetry breaking terms. The tree-level potential is then:

V (0) = �+m2
+�

2 +
g2

2
�4: (8.61)

From eq. (3.13), the DR
0
one-loop e�ective potential contribution is:

V (1) = 2h(x1) + h(x2) + h(x3)� 2h(y1)� 2h(y2) + 3h(z): (8.62)

In that scheme, by following the procedures described in sections 2.1 and 6, I �nd the

following contributions to the two-loop e�ective potential:

V
(2)
SSS = g4�2

h
fSSS(x1; x1; x3) +

1

2
fSSS(x2; x2; x3) +

3

2
fSSS(x3; x3; x3)

i
; (8.63)

V
(2)
SS = g2

h
fSS(x1; x1)� 1

2
fSS(x1; x2)� 1

2
fSS(x1; x3) +

3

8
fSS(x2; x2)

+
1

4
fSS(x2; x3) +

3

8
fSS(x3; x3)

i
; (8.64)

V
(2)
FFS =

g2

M2 + 8g2�2

h
2(y1 + z)fFFS(0; y1; x1) + 2(y2 + z)fFFS(0; y2; x1)

+2zffFFS(y1; y1; x2) + fFFS(y1; y1; x3) + fFFS(y2; y2; x2) + fFFS(y2; y2; x3)g
+M2ffFFS(y1; y2; x2) + fFFS(y1; y2; x3)g

i
; (8.65)

V
(2)

FFS
=

2g4�2

M2 + 8g2�2

h
2y1ffFFS(y1; y1; x3)� fFFS(y1; y1; x2)g

+2y2ffFFS(y2; y2; x3)� fFFS(y2; y2; x2)g
+M2ffFFS(y1; y2; x2)� fFFS(y1; y2; x3)g

i
; (8.66)

V
(2)
SSV =

g2

2

h
fSSV (x1; x1; z) + fSSV (x2; x3; z)

i
; (8.67)

V
(2)
V S = g2

h
FV S(z; x1) +

1

2
FV S(z; x2) +

1

2
FVS(z; x3)

i
; (8.68)

V
(2)
V V S = g2zFV V S(z; z; x3); (8.69)

V
(2)
FFV =

g2

2(M2 + 8g2�2)

h
(M2 + 8g2�2)FFFV (0; 0; z) + y2FFFV (y1; y1; z)

+y1FFFV (y2; y2; z) + 2zFFFV (y1; y2; z)
i
; (8.70)

V
(2)

FFV
=

2g6�4

M2 + 8g2�2

h
FFFV (y1; y1; z) + FFFV (y2; y2; z)� 2FFFV (y1; y2; z)

i
; (8.71)

V (2)
gauge = 0: (8.72)
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We can now test the RG invariance of the e�ective potential. The one-loop scalar anoma-

lous dimension and beta functions in the DR
0
scheme are:


(S;1)
� = �g2; (8.73)

�(1)g = 2g3; (8.74)

�
(1)
M = 4g2M; (8.75)

�
(1)
m2
+

= �8g2M2 + 2g2(m2
+ �m2

�); (8.76)

�
(1)

m2
�

= �8g2M2 + 2g2(m2
� �m2

+); (8.77)

�
(1)
� = (m2

+)
2 + (m2

�)
2 �M4: (8.78)

From eq. (8.62) one therefore �nds that

Q
@

@Q
V (1) = M4 � (m2

+)
2 � (m2

�)
2 + 8g2�2M2 + 2g2�2m2

�

�4g2�2m2
+ � 4g4�4; (8.79)

and, from eqs. (8.73)-(8.78),

X
I

�
(1)
�I

@

@�I
V (0) = �M4 + (m2

+)
2 + (m2

�)
2 � 8g2�2M2 � 2g2�2m2

�

+2g2�2m2
+ + 2g4�4; (8.80)

�(S;1)� �
@

@�
V (0) = 2g2�2m2

+ + 2g4�4; (8.81)

so that eq. (7.2) is satis�ed. At two loop order, one has


(S;2)
� = 4g4; (8.82)

�(2)g = 8g5; (8.83)

�
(2)
M = 32g4M; (8.84)

�
(2)
m2
+

= 96g4M2 + 16g4m2
+; (8.85)

�
(2)

m2
�

= 96g4M2 + 16g4m2
�; (8.86)

�
(2)
� = 4g2(m2

+)
2 + 4g2(m2

�)
2 + 8g2M4; (8.87)

so that

X
I

�
(2)
�I

@

@�I
V (0) = 8g2M4 + 4g2(m2

+)
2 + 4g2(m2

�)
2 + 96g4�2M2

+16g4�2m2
+ + 8g6�4; (8.88)

�(S;2)� �
@

@�
V (0) = �8g4�2m2

+ � 8g6�4: (8.89)
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One also �nds from eqs. (8.63)-(8.72) and the results of section 6:

Q
@

@Q
V (2) +

"X
I

�
(1)
�I

@

@�I
� 

(S;1)
� �

@

@�

#
V (1) = �8g2M4 � 4g2(m2

+)
2 � 4g2(m2

�)
2

�96g4M2�2 � 8g4�2m2
+: (8.90)

Together, eqs. (8.88)-(8.90) verify eq. (7.3).

9 Outlook

In this paper, I have presented the results for the two-loop e�ective potential of a general

renormalizable �eld theory in the Landau gauge, in each of the MS, DR, and DR
0
renormal-

ization schemes. These results should be useful in connecting speci�c models of electroweak

symmetry breaking to future data in a precise way.

It is not unlikely that the correct model for physics near the TeV scale is based on some

version of softly-broken supersymmetry, either the MSSM or some moderate extension of it.

Previous calculations of the e�ective potential in the MSSM have used the one-loop result

[28] and partial two-loop approximations with leading corrections proportional to �Sy4t and

y4t [29]-[33]. However, there is still some RG scale-dependence in these results, compared to

estimates of our eventual ability to measure properties of the Higgs sector at future colliders.

Use of the full two-loop DR
0
e�ective potential should further reduce the scale dependence.

RG improvement methods [17]-[20], [34]-[38] should enable an accurate determination of the

vacuum of the MSSM and its extensions. I plan to report on the application of the results

of the present paper to the MSSM soon [39].

Appendix A: Individual diagram contributions to the

functions fgauge and Fgauge

The three Feynman diagrams labelled V V , V V V , and ggV in �gure 2 all involve the �eld-

dependent coupling gabc, and combine to yield V (2)
gauge. In the MS scheme, the individual

diagram contributions to the function fgauge(x; y; z) are given in an obvious notation by

fgauge(x; y; z) = fV V V (x; y; z) + fV V (x; y) + fV V (x; z) + fV V (y; z)

+fggV (x) + fggV (y) + fggV (z); (A.1)

where

fV V V (x; y; z) =
1

4xyz

n
(�x4 � 8x3y � 8x3z + 32x2yz + 18y2z2)I(x; y; z)

32



+(y � z)2(y2 + 10yz + z2)I(0; y; z)� x4I(0; 0; x)

+(x2 � 9y2 � 9z2 + 9xy + 9xz � 13yz)xJ(y; z)

+4x3yz +
129

4
xy2z2 �

�
20x

3
+
y

2
+
z

2

�
xyzJ(x)

o
+(x$ y) + (x$ z); (A.2)

fV V (x; y) =
27

4
J(x; y) +

45x

8
J(y) +

45y

8
J(x) +

63xy

16
; (A.3)

fggV (x) =
x

2
I(0; 0; x) +

x

3
J(x): (A.4)

Similarly, in the DR
0
scheme,

Fgauge(x; y; z) = FV V V (x; y; z) + FV V (x; y) + FV V (x; z) + FV V (y; z)

+fggV (x) + fggV (y) + fggV (z); (A.5)

where

FV V V (x; y; z) = fV V V (x; y; z) + f��V (x; y; z) + f��V (z; x; y) + f��V (y; z; x); (A.6)

FV V (x; y) = fV V (x; y) + f�V (x; y) + f�V (y; x) + f��(x; y): (A.7)

with fggV (x) given as before. Explicitly,

FV V V (x; y; z) =
1

4xyz

n
(�x4 � 8x3y � 8x3z + 32x2yz + 18y2z2)I(x; y; z)

+(y � z)2(y2 + 10yz + z2)I(0; y; z)� x4I(0; 0; x)

+(x2 � 9y2 � 9z2 + 9xy + 9xz � 13yz)xJ(y; z)

+
xy2z2

4
+ (�44x

3
+
47y

2
+
47z

2
)xyzJ(x)

o
+(x$ y) + (x$ z); (A.8)

FV V (x; y) =
27

4
J(x; y)� 3x

8
J(y)� 3y

8
J(x)� xy

16
: (A.9)

The results for vanishing arguments are easily obtained from eqs. (2.29)-(2.31).

Appendix B: Renormalization-group-scale derivatives

It is often useful to have expressions for the derivatives of the two-loop e�ective potential

functions with respect to the renormalization scale Q, for example to check RG invariance.

The derivative of the one-loop e�ective potential function h(x) de�ned in eq. (3.13) is

Q
@

@Q
h(x) = �x2=2: (B.1)
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The derivatives of the two-loop functions can all be found from those of the basis functions:

Q
@

@Q
J(x) = �2x; (B.2)

Q
@

@Q
J(x; y) = 2xy(2� lnx� lny); (B.3)

Q
@

@Q
I(x; y; z) = 2(xlnx+ ylny + zlnz)� 4(x+ y + z): (B.4)

For the derivatives of the MS two-loop functions, one �nds:

Q
@

@Q
fSSS(x; y; z) = �2(xlnx+ ylny + zlnz) + 4(x+ y + z); (B.5)

Q
@

@Q
fSS(x; y) = 2xy(2� lnx� lny); (B.6)

Q
@

@Q
fFFS(x; y; z) = 4(z2 � x2 � y2 � xy � xz � yz) + 2x2lnx+ 2y2lny

�2z2lnz + 4(x+ y)zlnz; (B.7)

Q
@

@Q
fFFS(x; y; z) = 4(xlnx+ ylny + zlnz)� 8(x+ y + z); (B.8)

Q
@

@Q
fSSV (x; y; z) = �8x2 � 8y2 +

16

3
z2 � 12(xy + xz + yz) + 6x2lnx+ 6y2lny

�2z2lnz + 6(x+ y)zlnz; (B.9)

Q
@

@Q
fV S(x; y) = xy(8� 6lnx� 6lny); (B.10)

Q
@

@Q
fV V S(x; y; z) = 9(x+ y) + 5z � 9

2
(xlnx+ ylny)� 6zlnz; (B.11)

Q
@

@Q
fFFV (x; y; z) =

20

3
z2 + (6x + 6y � 4z)zlnz; (B.12)

Q
@

@Q
fFFV (x; y; z) = 12(xlnx+ ylny + zlnz)� 16(x + y)� 24z; (B.13)

Q
@

@Q
fgauge(x; y; z) = �97

3
(x2 + y2 + z2)� 72(xy + xz + yz)

+
9

2
[xy(lnx+ lny) + xz(lnx+ lnz) + yz(lny + lnz)]

+26(x2lnx+ y2lny + z2lnz): (B.14)

For the functions used with epsilon scalars in the DR scheme, one has:

Q
@

@Q
f�S(x; y) = 4xy; (B.15)

Q
@

@Q
f��S(x; y; z) = 4z; (B.16)

Q
@

@Q
fFF�(x; y; z) = �4x2 � 4y2; (B.17)
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Q
@

@Q
fFF�(x; y; z) = �8x� 8y; (B.18)

Q
@

@Q
f�V (x; y) = 12xy; (B.19)

Q
@

@Q
f��(x; y) = 0; (B.20)

Q
@

@Q
f��V (x; y; z) = �12xz � 12yz + 4z2: (B.21)

Finally, the functions used in the DR
0
scheme (besides those found in MS) satisfy:

Q
@

@Q
FV S(x; y) = 6xy(2� lnx� lny); (B.22)

Q
@

@Q
FV V S(x; y; z) = 9(x+ y + z)� 9

2
(xlnx+ ylny)� 6zlnz; (B.23)

Q
@

@Q
FFFV (x; y; z) = �4x2 � 4y2 +

20

3
z2 + (6x+ 6y � 4z)zlnz; (B.24)

Q
@

@Q
FFFV (x; y; z) = 12(xlnx+ ylny + zlnz)� 24(x + y + z); (B.25)

Q
@

@Q
Fgauge(x; y; z) = �85

3
(x2 + y2 + z2)� 72(xy + xz + yz)

+
9

2
[xy(lnx+ lny) + xz(lnx+ lnz) + yz(lny + lnz)]

+26(x2lnx+ y2lny + z2lnz): (B.26)
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